Modelling the delivery of supraglacial meltwater to the ice/bed interface: application to southwest Devon Ice Cap, Nunavut, Canada
نویسندگان
چکیده
The transfer of surface-generated meltwater to the subglacial drainage system through full ice thickness crevassing may lead to accelerated glacier velocities, with implications for ice motion under future climatic scenarios. Accurate predictions of where surface meltwater accesses the ice/bed interface are therefore needed in fully coupled hydrodynamic ice-sheet models. We present a spatially distributed modelling routine for predicting the location and timing of delivery of surface-derived meltwater to the ice/bed interface through moulins and supraglacial lake drainage. The model is explained as it is applied to the Croker Bay glacial catchment of Devon Ice Cap, Canada. The formation of moulins, drainage of lakes, and the transfer of meltwater through the full ice thickness are modelled for the 2004 and 2006 ablation seasons. Through this case study we assess the model’s sensitivity to degree-day factors, fracture toughness, tensile strength and crevasse width, and confirm that parameters influencing the rate at which water fills a crevasse are the most significant controls on the ability of a crevasse to reach the bed. Increased surface melt production, therefore, has the potential to significantly influence the spatial and temporal transfer of meltwater through surface-to-bed connections in a
منابع مشابه
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological s...
متن کاملDevelopment and application of a time-lapse photograph analysis method to investigate the link between tidewater glacier flow variations and supraglacial lake drainage events
Marine-terminating glaciers may experience seasonal and short-term flow variations, which can impact rates of ice flux through the glacier terminus. We explore the relationship between variability in the flow of a large tidewater glacier (Belcher Glacier, Nunavut, Canada), the seasonal cycle of surface meltwater production and the rapid drainage of supraglacial lakes. We demonstrate a novel met...
متن کاملDistinct bacterial communities exist beneath a high Arctic polythermal glacier.
Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding ...
متن کاملVariability in ice motion and dynamic discharge from Devon Ice Cap, Nunavut, Canada
Feature tracking of approximately annually separated Landsat-7 ETM+ imagery acquired from 1999 to 2010 and speckle tracking of 24-day separated RADARSAT-2 imagery acquired from 2009 to 2015 reveal that motion of the major tidewater glaciers of Devon Ice Cap is more variable than previously described. The flow of almost half (six of 14) of the outlet glaciers slowed over the observation period, ...
متن کاملEfficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet.
Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient ...
متن کامل